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Replication (crisis) in Demography?

)

Reasons why not

Strong methods

Strong focus on
representative data

Less measurement error

Open data

Large N
Often descriptive

Reasons why

- Non-experimental

- Correlational, but little
causal inference

- Large N, yet star gazing
- Controlling at will

- “Culture” as a
get-out-of-jail-for-free card



Predictability Crisis?

L)

Measuring the predictability of life outcomes with
a scientific mass collaboration
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Predictability Crisis?

Social scientists studying the life course must
find a way to reconcile a widespread beliet
that understanding has been generated by
these data—as demonstrated by more than
/50 published journal articles using the Fragile
Families data with the fact that the very same
data could not yield accurate predictions of
these important outcomes.
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1'he Proposal

a shift towards prediction
leads to a more reliable
and useful social science

microsimulation can
advance traditional
statistical modelling
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a shift towards prediction
leads to a more reliable
and useful social science
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Out-of-Sample Prediction
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1'he Proposal

a shift towards prediction
leads to a more reliable
and useful social science

out-of-sample predictive ability:

QOO

clear measure of facilitates dialogue
effect size theory- and data-
driven models

measure of distance
theory and practice



out-of-sample
predictive ability

- Is easy(ier) to understand

- can be compared across
analytical techniques

- can be compared across
models

is less gameable

Logistic Regression: Why We
Cannot Do What We Think
We Can Do, and What We Can

Do About It
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1'he Proposal

a shift towards prediction
leads to a more reliable
and useful social science

out-of-sample predictive ability:

QOO

clear measure of facilitates dialogue
effect size theory- and data-
driven models

measure of distance
theory and practice
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data
challenge

theory- and data-driven teams
engage in common task

using common data

and common metric




Data Challenge

theory- and data-driven teams
engage in common task

using common data
and common metric
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Prediction Benchmarks

Progress usually comes {rom many
small 1improvements; a change of 1%
can be a reason to break out the

Champ agT11C Liberman, 2012

GGP Generations & Gender Programme
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FERTILITY PREDICTION
CHALLENGE

i University of Groningen,
(© March-August 2024 ‘ Netheriands

LF oM

s the current best [known to us] F1-score
O 54* of a classifier that predicts who is going
. to have a child in the next three years

CAN YOU BEAT THIS SCORE?

I Do you want to contribute to research on fertility behavior and the
methodology of using prediction in social sciences?

Are you interested in working with unique registry-based datasets,
including a social network for the entire Dutch population?

Are you looking for an engaging practical task for your machine
learning course or workshop?

Or are you simply curious about the challenge and want to learn
more about its design and prizes?

_ Contacts:
Sign up here to Gert Stulp g.stulp@rug.nl

receive an update Elizaveta Sivak e.sivak@rug.nl
when the registration

for the challenge

opens and details I
are available " J» Eyra

* This result was obtained by the STL Trio Titans team at the data challenge at the SICSS-ODISSEI summer school in June 2023.
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a shift towards prediction
leads to a more reliable
and useful social science

out-of-sample predictive ability:

QOO

clear measure of facilitates dialogue
effect size theory- and data-
driven models

measure of distance
theory and practice



The perils of policy by p-value: Predicting
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out-of-sample predictive ability
IS a measure of how useful
our theory is in the real world

Why significant variables aren’t automatically
good predictors

Adeline Lo*, Herman ChernoM™ ', Tian Zheng', and Shaw-Hwa Lo*'
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out-of-sample predictive ability
IS @ measure of how useful
our theory is in the real world

Social scientists studying the life course must
find a way to reconcile a widespread belief
that understanding has been generated by
these data—as demonstrated by more than
/50 published journal articles using the Fragile
Families data with the fact that the very same
data could not yield accurate predictions of
these important outcomes.
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a shift towards prediction
leads to a more reliable
and useful social science

out-of-sample predictive ability:

QOO

clear measure of facilitates dialogue
effect size theory- and data-
driven models

measure of distance
theory and practice



No Panacea

Patterns ¢? CellP’ress

OPEN ACCESS

Leakage and the reproducibility
crisis in machine-learning-based science

Sayash Kapoor' " and Arvind Narayanan'
'"Department of Computer Sailence and Ceonter for Informat on Technology Policy, Princeton Uriverstty, Prinoceton. NJ 08540, USA

“Load contact
.WATM“ Ty Shxnrealion &t
hitos:/'dol.ora/10.101 6/ patter. 2023, 100804

THE BIGGER PICTURE Machine lcarming (ML) is widely used across dozons of scientific fhields. However, o
cCOMMON Issue called “data leaxage™ can lead 10 errors in data analysis. We surveyed a vanety of research
that uses ML and found that dala leakage affects at least 2594 studies across 17 felds, leading 1o overopti-
MIstc findings. We classified these errors Into ¢ight different types. We propose a solution: model Info
sheets that can be used 1o identity and prevent each of these eight types of leakage. We also tested the
reproducibility of ML in a specific field: predicting civil wars, where complex ML models were thought to
outperform traditional statistical models. Interestingly, when we corrected for data leakage, the supposed
supenonty of ML models disappeared: they did not perform any better than olger methods. Our work serves
as a cautionary note against taking results in ML-based science at face value

/;\l/;\e/‘;\f;j Development/Pre-production: Dala science output has been
e ~’ rolled out/validated across multiple domains/problems




But Much Needed

pNAS RISEARCH ARTICLE PAYCHOLOGI AL AND COCNITIVE SCENCES ' OFEN ACCESS )

An illusion of predictability in scientific results: Even experts
confuse inferential uncertainty and outcome variability
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Tradidonally, scientists have placed more emphasis on communicating inferential
uncertainty (i.c., the precision of statistical extimates) compared to outcome variability
{i.c., the predictability of individual outcomes). Here, we show that this can lead
to sizable misperceptions about the implications of scientific results. Specifically, we
present theee preregistered, randomized experiments where participants saw the same
scientihc findings visualized as showing only inferential uncertainty, only outcome
variability, or both and answered questions about the size and importance of hndings
they were shown. Our results, composed of responses from medical professionals,
professional data sclentists, and tenure-track faculty, show that the prevalent form of
visualizing only inferential uncertainty can lead 1o significant overestimates of treatment
effects, even among highly trained experts. In contrast, we find that depicting both
inferential uncertainty and outcome variability keads to more accurate perceptions of

results while appearing to leave other subjective impressions of the results unchanged,

on average.

Aggressiveness score
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1'he Proposal

a shift towards prediction
leads to a more reliable
and useful social science

microsimulation can
advance traditional
statistical modelling
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microsimulation can
advance traditional
statistical modelling

microsimulation can:
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microsimulation can
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MODEL INPUT
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age entry fertility duration
union preferences  spacing

people conceive
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Assumptions

1. No break-ups el

2. All births are preferred 2 20

3. Preferences do not determine relationship 7 i

4. Preferences do not determine education L R

5. Preferences do not change c

6. Education is not related to ‘biology’ 30

/. Preferences are measured well

Improvements

low medium high

1. Make waiting time dependent on age education

and education
2. Better measures of age in relationship
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microsimulation can
advance traditional
statistical modelling
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Unpredictable Variation

0% predictive accuracy

iInherent

unpredictability

100%



Unique Insight into State of Field

0% predictive accuracy 100%

predicted by % variance not predicted by existing

. variables because of incomplete
Variables theory & measures




1'he Proposal

a shift towards prediction
leads to a more reliable
and useful social science

microsimulation can
advance traditional
statistical modelling



FERTILITY PREDICTION
CHALLENGE

i University of Groningen,
(© March-August 2024 ‘ Netheriands

LF oM

s the current best [known to us] F1-score
O 54* of a classifier that predicts who is going
. to have a child in the next three years

CAN YOU BEAT THIS SCORE?

I Do you want to contribute to research on fertility behavior and the
methodology of using prediction in social sciences?

Are you interested in working with unique registry-based datasets,
including a social network for the entire Dutch population?

Are you looking for an engaging practical task for your machine
learning course or workshop?

Or are you simply curious about the challenge and want to learn
more about its design and prizes?

_ Contacts:
Sign up here to Gert Stulp g.stulp@rug.nl

receive an update Elizaveta Sivak e.sivak@rug.nl
when the registration

for the challenge

opens and details I
are available " J» Eyra

* This result was obtained by the STL Trio Titans team at the data challenge at the SICSS-ODISSEI summer school in June 2023.



