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Abstract Telomere length and the rate of telomere

attrition vary between individuals and have been

interpreted as the rate at which individuals have aged.

The biology of telomeres dictates shortening with age,

although telomere elongation with age has repeatedly

been observed within a minority of individuals in

several populations. These findings have been attributed

to error, rather than actual telomere elongation, restrict-

ing our understanding of its possible biological signif-

icance. Here we present a method to distinguish between

error and telomere elongation in longitudinal datasets,

which is easy to apply and has few assumptions. Using

simulations, we show that the method has considerable

statistical power ([80 %) to detect even a small

proportion (6.7 %) of TL increases in the population,

within a relatively small sample (N = 200), while

maintaining the standard level of Type I error rate

(a B 0.05).
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Telomeres are DNA sequence repeats at the end of

chromosomes. These repeats shorten at each cell

replication or by damage, and critical telomere lengths

lead to cellular senescence, apoptosis and/or genome

instability (Riethman 2008). These properties of

telomeres suggest direct involvement in aging mech-

anisms, but telomere length (TL) may also be an

indicator of the progression of aging within individ-

uals and/or differences in aging between individuals

(Mather et al. 2011; Riethman 2008). Indeed, short TL

is associated with higher mortality risk in humans

(Boonekamp et al. 2013) and other free-living animals

(e.g. Barrett et al. 2013; Bize et al. 2009; Heidinger

et al. 2012; Salomons et al. 2009). Yet, comparative

analyses do not support that shorter telomeres dictate

shorter lifespans between species (Gorbunova and

Seluanov 2009). The rate at which telomeres shorten is

also variable between individuals (e.g. Aviv et al.

2009; Nordfjäll et al. 2009) and higher rates of

telomere attrition are associated with increased risk of

mortality (Epel et al. 2009).

The biological properties of telomeres dictate

shortening rather than lengthening in tissues in which
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telomeres are not actively elongated (Gorbunova and

Seluanov 2009). Yet in the majority of studies TL

increases are apparent within a small group of

individuals. These elongations are often attributed to

error (e.g. Aviv et al. 2009; Beaulieu et al. 2011; Bize

et al. 2009; Chen et al. 2011; Ehrlenbach et al. 2009;

Epel et al. 2009; Foote et al. 2011; Nordfjäll et al.

2009; Salomons et al. 2009; Shalev et al. 2012;

Steenstrup et al. 2013) which is composed of both

measurement error of TL and other unknown causes of

within-individual variability (e.g. variation in TL of

the tissue sampled). An alternative explanation is that

telomeres do elongate in some individuals. To our

knowledge, no statistical approach exists to distin-

guish telomere elongation from error within longitu-

dinal studies. Here we present a method, which is easy

to apply and has few assumptions. Using simulations,

we show that this method has considerable statistical

power ([80 %), while it retains the standard level of

Type I error rate (a B 0.05).

Our method first requires estimating variance due to

measurement errors (error variance) in two distinct

ways related to two different assumptions: (1) TL

increases and/or decreases and (2) telomeres do not

elongate. Under the first assumption, error variance

can be estimated in two steps. First, we estimate the

residual variance for each individual using an ordinary

(least square) linear regression:

yi ¼ b0 þ b1ti þ ei; ð1Þ

ei�Nð0; r2
e Þ; ð2Þ

where ti is the ith time point at which TL, yi, is

measured (i = 1, 2,…, n; n is the number of TL

measurements and n [ 2), b0 is the intercept (TL at

t = 0), b1 is the slope (regression coefficient for t), and

ei is the ith residual value. Residuals are normally

distributed (N) with a variance of r2
e . If r2

ej represents

the jth individual’s residual variance (j = 1, 2,…, N; N

is the number of individuals in a study), then, an

overall error variance estimate of TL (�r2
e ) can be

obtained by taking an average of r2
ej:

�r2
e ¼

1

N

XN

j¼1

r2
ej: ð3Þ

Perhaps, more practically, Eq. 3 can be re-written

using the residual sum of squares:

�r2
e ¼

1

N

XN

j¼1

1

nj � 2

Xn

i¼1

e2
ij; ð4Þ

where nj is the number of TL measurements n for jth

individual and e2
ij is the squared residual value for the

ith time point for the jth individual (cf. Crawley 2005).

Under the second assumption (i.e. no telomere

elongation), the measurement error variance (r02e ) can

be obtained by:

r02e ¼
1

2ðm� 1Þ
Xm

k¼1

D2
k ; ð5Þ

where D2
k is the difference in TL between the initial

and last measurements in the kth individuals that

showed an increase in TL (k = 1, 2,…, m; m is the

number of individuals whose TL elongated). When

observed TL increases are not due to error, but

consistent telomere elongation is present in the

population, the largest increases of TL are between

the first and the last measurement in time. Therefore to

increase sensitivity of detecting telomere elongation

we define telomere increases as the TL at the last

measurement minus the TL at the first measurement

per individual as in Eq. 5. Note that the same

equations can be used to ask the question whether

telomere increases occur at any point in time in the

population. A mathematical derivation of Eq. 5 is

given in the Appendix.

When the estimated error variance r02e (Eq. 5) is

larger than the error variance �r2
e , when TL is allowed

to increase or decrease (Eq. 4), the hypothesis that

telomeres show no elongation in the sample can be

rejected. Statistically, such a comparison can be

achieved using a variance ratio test between r02e and

�r2
e . The ratio of these two estimated error variances

should follow an F distribution, which can be written

as:

r02e
�r2
e
�Fðm� 1; N � 1Þ ð6Þ

where the F distribution is defined by two degrees of

freedom (DF): (1) the numerator DF is the number of

observed TL increases minus 1 (m–1), and (2) the

denominator DF is the number of individuals in a

study minus 1 (N–1) (Crawley 2007).

When telomere elongation is statistically detected

within a population, the identification of individuals
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within the population that are likely to show true

telomere elongation (i.e. not the resultant of measure-

ment errors) can be identified using the upper confi-

dence limit (UCL) of �r2
e (Crawley 2007). The UCL of

the 95 % confidence interval (note that the 95 % here

is rather arbitrary and can be changed depending on

the level of certainty required) can be written as:

97:5% UCL ¼ ðN � 1Þ�r2
e

v2
N�1ð0:975Þ

ð7Þ

where v2
N�1ð0:975Þ is the value at p = 0.975 of the v2

distribution defined by DF = N - 1. This UCL of �r2
e

can be used to determine the normal distribution of the

UCL of the underlying measurement error distribu-

tion. Subsequently individual telomere increases (note

that the increases should be divided by 2 as in Eq. 5,

because the TL increases are a result from the addition

of two equal error distributions) that are at the

boundary of this normal distribution (with e.g. 95 %

confidence) can be looked up with, for example, the

function ‘qnorm’ (Wichura 1988) from R (R Devel-

opment Core Team 2011). These specific individuals

can be selected for follow-up studies, to examine

biological and environmental correlates (see also the

worked example provided with the manuscript).

To investigate the statistical power of the approach

proposed here, simulations were conducted in R (code

is available upon request). Individual based data of

three time points per individual were generated.

Individuals were set to lose an average TL of three

units per time, which varied among individuals with a

given standard deviation (labeled slope SD). At each

time point TL was subject to error (labeled error SD).

Simulations were run for different combinations of

sample size (range 50–500), error and slope SDs (both

range 1–5) and each simulation was run 1,000 times.

The resulting statistical power was calculated as the

fraction of times the null hypothesis was rejected when

it was actually false (Fig. 1), in other words, if the

method detected telomere elongation when true telo-

mere elongation was present in the simulated data. As

expected, power increased with lower error, larger

sample size and higher incidence of telomere elonga-

tion in the sample (i.e. higher slope SD). The average

proportion of individuals showing a ‘real’ positive

slope in these simulations was 0.13, 6.7, 16, 23 and

27 % for slope SD 1, 2, 3, 4, 5 respectively. Note that

0.13 % might not be a biologically relevant proportion

of individuals that show true telomere elongation, yet

in the continuum presented in Fig. 1, it does give an

impression of sensitivity and reliance on outliers of the

method presented, and for this reason we included it in

our power simulations. The statistical approach pre-

sented here is thus able to detect telomere elongation

of only a small proportion (C6.7 %) of a relatively

small sample (under 500 individuals) with consider-

able power. In addition, the chance of rejecting the

null hypothesis when it is actually true (Type I error)

was simulated using a slope SD of 0 and without an

average decrease in TL for a range of sample sizes

(50–500) and error SD (of 3 and 4). Type I error rates

were equal to the expected a, 5 % (4.8 % of 10,000

simulations) and were independent of sample size and

error SD. Note that if there is an average decrease of

TL across the population, type I error rates will be

Fig. 1 Result of the

statistical power

simulations. The statistical

power (indicated by the

grayscale, darker means

higher power, the fraction of

times the null hypothesis is

rejected when it is actually

false) is dependent on the

sample size on the y-axis,

and the error standard

deviation (error SD) and

slope standard deviation

(slope SD), both depicted on

the x-axis
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much lower given that the decline of TL over time

reduces the amount of increases due to error.

The formal test to distinguish true telomere elon-

gation from error, described here, forms an incentive

to measure individuals at least three times

longitudinally.

The detection of significant elongation of TL within

a population will likely spur research into the mech-

anisms regulating telomere elongation and into spe-

cific properties or circumstances of the individuals that

show true telomere elongation.
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Appendix

The derivation of Equation 5

A two-level regression which model telomere length

(TL) can be expressed as:

yij ¼ b0 þ cj þ ðb1 þ ujÞtij þ eij; ðA1Þ

cj

uj

� �
�N

0

0

� �
;

r2
c qrcru

qrcru r2
u

� �� �
; ðA2Þ

eij�Nð0; r2
e Þ ðA3Þ

where tij is the ith time point at which TL, yij is

measured for the jth individual (i = 1, 2,…, n; n is the

number of TL measurements and n [ 2; j = 1, 2,…, N;

N is the number of individuals in a study), b0 is the

grand intercept (TL at t = 0), b0 is the grand slope

(regression coefficient for t), cj is the deviation from b0

for the jth individual, uj is the deviation from b0 for the

jth individual, cj and uj has a multivariate normal

distribution with the variance–covariance structure

specified in A2, and eij is the ith residual value and

residuals are normally distributed with a variance of r2
e .

When we consider A1 at the time points 1 and n (i.e.

i = 1 and i = n), TL can be written as:

y1j ¼ b0 þ cj þ ðb1 þ ujÞt1j þ e1j; ðA4Þ

ynj ¼ b0 þ cj þ ðb1 þ ujÞtnj þ enj: ðA5Þ

When we have two measurements in time, 1 and m

(the final time point) of telomeres the difference in

telomere length is described by:

ynj � y1j ¼ b1ðtnj � t1jÞ þ ujðtnj � t1jÞ þ enj � e1j:

ðA6Þ
By setting dj = ynj - y1j, the variance of dj can be

expressed as:

VarðdjÞ ¼ ðtnj � t1jÞ2r2
u þ 2r2

e : ðA7Þ

Note that the constant b1(tnj - t1j) disappears.

Using the definition of variance and further

rearranging;

1

ðN � 1Þ
XN

j¼1

ðdj � �dÞ2 ¼ ðtnj � t1jÞ2r2
u þ 2r2

e ; ðA8Þ

1

2ðN � 1Þ
XN

j¼1

d2
j ¼ r2

e þ
ðtnj � t1jÞ2r2

u

2
þ

�d2

2
; ðA9Þ

where �d is the mean value of dj. As �d ¼ b1ðtnj � t1jÞ
and setting (tnj - t1j) = u;

1

2ðN � 1Þ
XN

j¼1

d2
j ¼ r2

e þ
u2

2
ðr2

u þ b2
1Þ: ðA10Þ

When we assume that TL does not increase or

decrease, i.e. r2
u þ b2

1

� �
¼ 0, A10 reduces to:

r2
e ¼

1

2ðN � 1Þ
XN

j¼1

d2
j : ðA11Þ

If we estimate r2
e in A11 only from individuals that

show an increase of TL, or dj [ 0 (set such dj as Dj),

we have Eq. 5 from the main text;

r02e ¼
1

2ðm� 1Þ
Xm

k¼1

D2
k ; ðA12Þ

where D2
k is the difference in TL between the initial

and last measurements in the kth individuals that

showed an increase in TL (k = 1, 2,…, m; m is the

number of individuals whose TL elongated). Note that

we assume r02e is also normally distributed as with r2
e

(A3). Due the symmetric nature of the normal

distribution, r02e can be correctly estimated from

restricted data, Dj under our assumption.
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